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Abstract
Understanding properties of polymer alloys with computer simulations frequently requires 
equilibration of samples comprised of microscopically described long molecules. We present 
the extension of an efficient hierarchical backmapping strategy, initially developed for 
homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures 
present significant interest for practical applications and fundamental polymer physics. In 
our approach, the blend is coarse-grained into models representing polymers as chains of 
soft blobs. Each blob stands for a subchain with Nb microscopic monomers. A hierarchy of 
blob-based models with different resolution is obtained by varying Nb. First the model with 
the largest Nb is used to obtain an equilibrated blend. This configuration is sequentially fine-
grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based 
model. Once the blob-based description is sufficiently detailed, the microscopic monomers 
are reinserted. The hard excluded volume is recovered through a push-off procedure and the 
sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order 
of the entanglement time. For the initial method development we focus on miscible blends 
described on microscopic level through a generic bead-spring model, which reproduces 
hard excluded volume, strong covalent bonds, and realistic liquid density. The blended 
homopolymers are symmetric with respect to molecular architecture and liquid structure. 
To parameterize the blob-based models and validate equilibration of backmapped samples, 
we obtain reference data from independent hybrid simulations combining MD and identity 
exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential 
of the backmapping strategy is demonstrated by equilibrating blend samples with different 
degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is 
verified by comparing chain conformations and liquid structure in backmapped blends with 
the reference data. Possible directions for further methodological developments are discussed.
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1.  Introduction

Understanding the properties of liquids comprised of long 
polymer molecules using computer simulations, frequently 
requires models reproducing key microscopic features of 
chain architecture and liquid structure. However, the prep
aration of equilibrated samples described with such models is 
challenging since microscopic features, such as hard excluded 
volume, in combination with mesoscopic chain connectivity 
lead to protracted relaxation times [1]. Thus developing non-
dynamic approaches for efficient sampling of configura-
tion space of polymeric liquids is an area of active research. 
Several strategies are available, including advanced rebridging 
Monte Carlo (MC) algorithms [2, 3], configuration assembly 
procedures [4–7], and hierarchical backmapping approaches 
[8–15]. This classification is not strict, e.g. it is possible to 
combine concepts from configuration assembly and hierar-
chical backmapping [16, 17].

Both configuration assembly and hierarchical backmap-
ping are divide-and-conquer strategies. In configuration 
assembly procedures the polymer liquid is first described 
with crude resolution, aiming to reproduce equilibrium long-
wavelength structural and conformational properties. This 
is typically achieved by assembling an ideal gas of chains, 
reproducing conformational distributions expected [4–7] in 
the polymer liquid. Correlations are then partially recovered, 
e.g. by reducing density fluctuations through a MC optim
ization [4, 5, 7]. Subsequently, the microscopic degrees of 
freedom are reinserted into the long-wavelength ‘matrix’ by 
recovering slowly the microscopic excluded volume (push-
off process). Because at this stage only short-wavelength 
properties must be equilibrated, the computations remain 
feasible. Although the computation time for optimizing the 
long-wavelength liquid structure increases with chain length, 
currently such techniques can equilibrate large samples of 
entangled chains [7]. Nevertheless, because the long-wave-
length description results from an algorithmic construc-
tion rather than a strict statistical-mechanical treatment of a 
coarse-grained (CG) model, configuration assembly methods 
encounter some fundamental difficulties. In principle, gener-
ating conformations assuming that long chains in a polymer 
melt are ideal is an approximation [18]. An a priori predic-
tion of conformational properties in inhomogeneous systems 
is even more challenging [5].

In contrast to configurational assembly, hierarchical back-
mapping strategies are schemes linking simulations performed 
in a standard statistical-mechanical framework. The polymeric 
material is described on different levels of resolution, where 
the microscopic representation occupies the last level. On the 
remaining levels, the material is described through suitable 
CG models. The sample is first equilibrated using the coarsest 
model and one proceeds by reinserting the degrees of freedom 
of the next level. The system is re-equilibrated and the pro-
cedure is repeated until the target microscopic description is 
reached.

The efficiency of backmapping schemes can be tremen-
dously increased [11–17] by incorporating into the hierarchy 
mesoscopic models with soft potentials, e.g. comparable in 

strength to the thermal energy kT. For example, equilibrating 
intermediate and long-wavelength properties of a polyeth-
ylene melt using a model with a soft potential (inspired by 
dissipative particle dynamics), prior to switching to Lennard-
Jones interactions, allowed [17] the preparation of samples 
containing 103 highly entangled chains (103 united atoms). 
Melts with 103 bead-spring (BS) chains with about 200 
entanglements per chain were equilibrated using a multiscale 
approach including a lattice soft model [14]. Hierarchies 
based on models describing polymers as strings of soft blobs 
[19–23] are straightforward to construct [12, 24], because 
the sequence of different resolutions is naturally generated 
by adjusting the amount of microscopic monomers lumped 
into each blob. A proof-of-concept study using sequential 
fine-graining within blob hierarchies reported [12] the genera-
tion of melts containing, e.g. 103 chains with 2 × 103 beads. 
The method is not limited to the sample-sizes reported in that 
study, since the efficiency of the scheme depends on system 
volume but not on chain length [12].

In contrast to homopolymer melts, hierarchical backmap-
ping based on soft models has been rarely employed to gen-
erate microscopically described samples of multicomponent 
systems with long polymer chains [15]. Such samples are 
required, for instance, as starting configurations for studying 
rheological properties of highly entangled miscible blends. 
Understanding rheology of miscible blends presents tremen-
dous interest for materials development, motivated by the 
remarkable improvement of toughness in multiple network 
gels and elastomers [25–27]. Miscible polymer blends could 
serve as a basis for studying these improvements, utilizing 
their different reactivities and solubilities against cross-linking 
chemical agents as in [28, 29]. Comparing to single comp
onent polymer liquids, developing hierarchical backmapping 
schemes for multicomponent systems is significantly more 
challenging. Partially, this stems from the fact that the proper-
ties that must be reproduced on the mesoscopic levels of the 
hierarchy are more complicated and difficult to quantify. The 
degree of mutual compatibility of different components is one 
of these properties.

Motivated by the current state of art, we develop here a 
simple hierarchical backmapping scheme based on blob 
models, which enables the equilibration of highly entangled 
miscible blends. This scheme is evolved from a backmapping 
procedure developed earlier for homopolymer melts [12]. We 
consider blends of generic A and B homopolymers, described 
on the microscopic level through a standard BS model [30]. 
Though generic, this model captures key features of actual 
polymeric liquids including hard excluded volume, strong 
covalent bonds, and realistic monomer density. Only sym-
metric systems are addressed here, where the two components 
are differentiated exclusively via interactions between A and 
B monomers. For the mesoscopic representation of these 
blends we adapt the simple blob-based model [23] which 
has been employed in the hierarchical backmapping method 
for homopolymers [12]. Even for this simple multicomp
onent system, the development of a hierarchical backmapping 
strategy requires the consideration of several important meth-
odological questions including (a) the parameterization of the 
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blob-based model, (b) fine-graining procedure, and (c) verifi-
cation of equilibration of backmapped samples.

Our manuscript is organized as follows. Section 2, intro-
duces the microscopic and the soft blob models used to 
describe the symmetric blends. In section 3, we address the 
question of parameterizing the soft blob models. The proce-
dure of the backmapping is explained in section 4. An applica-
tion of the backmapping procedure is presented in section 5. 
We provide some concluding remarks and an outlook in 
section 6.

2.  Models

The workflow of the backmapping scheme used to equilibrate 
the blends in this work, presents a three-level hierarchy as 
illustrated in figure 1. First, a blend described with a crude 
blob-based model, figure 1(a), is equilibrated. The sample is 
fine-grained to obtain a configuration described by a blob-
based model with doubled resolution at each step, figure 1(b). 
The last configuration serves as an input for the reinsertion of 
microscopic details as demonstrated in figure 1(c). Below we 
discuss the details of the microscopic and blob-based models 
incorporated into the backmapping scheme.

2.1.  Microscopic model

We adopt as target microscopic systems for our back-map-
ping method, blends described by a standard BS model [30]. 
Specifically, we consider blends of A and B homopolymers 
with the same chemical structure, described by chains of 
beads linked by finite extensible nonlinear (FENE) springs. 
The potential corresponding to a FENE spring of length r is 
given by:

VFENE = −1
2

KR2
0 ln

[
1 −

(
r

R0

)2
]

.� (1)

There are no angular potentials between the springs, so that 
our microscopic model corresponds to setting the stiffness of 
the angular potential in [7, 12] to kθ = 0. In total there are n 
molecules in the blend (sum of A and B homopolymers) and 

each chain, irrespective of its chemical species, contains NBS 
beads.

Non-bonded interactions are present between every pair of 
beads and are defined through the Weeks–Chandler–Andersen 
(WCA) potential:

Vα,β = 4εα,β

[(σ0

r

)12
−
(σ0

r

)6
+

1
4

]
if r < 21/6σ0

= 0 otherwise.
� (2)
Here r is the distance between interacting beads, while α and 
β specify their type (A or B). We set σ0  and εAA = εBB = ε0 
as the length and energy units. K = 30ε0/σ

2
0 and R0 = 1.5σ0 

are used for the FENE potential. The number density of beads 
is fixed at 0.85/σ3

0. The time scale of the model is given by 

τ =
√

mσ2
0/ε0 , where the mass of the bead, m, is set to unity. 

The strength of interactions between beads of different type is 
set by εAB, which acts as a free parameter.

With this choice of parameters, a single-component 
homopolymer melt described by the microscopic model is 
characterized by an entanglement length of Ne ≈ 87 mono-
mers [7]. In the following, this estimation facilitates the 
choice of simulation protocols treating the microscopic model 
and setting the resolution of blob-based descriptions.

2.2.  Soft blob-based model

As a coarse-grained model for back-mapping, we adopt the 
soft-blob model studied in [12, 23, 24, 32]. Since the blob-
based model has been described in detail elsewhere [23, 32] 
only a brief summary is presented here. Specifically, the micro-
scopically described polymer molecules are coarse-grained 
into chains containing NSB = NBS/Nb blobs. Nb stands for the 
number of microscopic beads in a subchain represented by 
each blob. The radius, σ, and the coordinates of the center, 
R, of the blob match the instantaneous radius of gyration and 
position of the center-of-mass (COM) of the underlying sub-
chain. The potential associated with the degree of freedom σ 
is defined as:

Vblob(σ) = a1
N3

b

σ6 + a2
σ2

Nb
.� (3)

The connectivity of the chains of blobs is described by bond 
and angular potentials defined as:

Vbond(r) =
3r2

2b2
� (4)

Vangle(θ) =
1
2

k(1 + cos θ).� (5)

For a single component system (homopolymer melt) the 
energy of non-bonded interactions between blobs is given by:

Vnb = ε̃0

∑
i<j

∫
drρ(r|Ri,σi)ρ(r|Rj,σj)

+

(
4π
3

)3/2

a3

∑
i

∫
drρ(r|Ri,σi)

2.

�

(6)

Figure 1.  Concept of hierarchical backmapping using mesoscopic 
blob-based models of polymer chains. The configuration of a binary 
blend described with a crude blob-based model is presented in 
panel (a). Each blob in this sample is replaced by a pair of smaller 
ones, to obtain a configuration described with higher resolution 
panel (b). The fine-grained configuration serves as a framework for 
introducing microscopic details panel (c). The configurations have 
been created using the VMD software [31].
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Here ρ expresses [23] the density distribution of microscopic 
monomers underlying a blob. This distribution is assumed to 
be Gaussian and is defined as:

ρ(r|R,σ) =
(

3
2πσ2

)3/2

e−
3(r−R)2

2σ2 .� (7)

The second term in the right-hand side of equation  (6) 
describes the blob ‘self-energy’ due to interactions between 
underlying monomers. The self-energy does not depend on R 
and can be seen as an additional potential, coupled to the size 
of the blob. The determination of the parameters a1, a2, a3, b, 
k, and ε̃0 will be discussed in section 3.

To describe symmetric binary blends, we simply generalize 
the definition of non-bonded energy to:

Vnb = VAA + VBB + VAB + Vself,� (8)

VAA = ε̃0

∑
i<j(i,j∈{A})

∫
drρ(r|Ri,σi)ρ(r|Rj,σj),� (9)

VBB = ε̃0

∑
i<j(i,j∈{B})

∫
drρ(r|Ri,σi)ρ(r|Rj,σj),� (10)

VAB = ε̃AB

∑
i∈{A},j∈{B}

∫
drρ(r|Ri,σi)ρ(r|Rj,σj),� (11)

Vself =

(
4π
3

)3/2

a3

∑
i

∫
drρ(r|Ri,σi)

2.� (12)

The quantity ε̃AB presents an additional parameter, controlling 
the compatibility of blend components.

To describe the blends, as illustrated in figures  1(a) and 
(b), we employ two soft blob-based models, SB25 and SB50, 
with resolutions set by Nb = 25 and 50, respectively. All 
simulations involving these blob-based models employ an 
efficient particle-to-mesh MC method elaborated earlier [32]. 
The choice of the two resolutions is semi-empirical. Previous 
studies [12] demonstrated that Nb = 25 is ‘sufficiently large’ 
for the simple blob-based description to be a valid coarse-
grained representation of the generic microscopic model. 
Specifically, SB25 reproduces reasonably well [12] conforma-
tional and structural properties of microscopically-described 
homopolymer melts on scales comparable or larger than the 
size of SB25 blobs. In parallel, SB25 fulfils the condition 

Nb < Ne, which ensures [12] that the blend after the reinser-
tion of microscopic monomers must be re-equilibrated only 
on scales smaller than the tube diameter. This regime is gov-
erned by fast Rouse dynamics [1] and the computations are, 
therefore, feasible. One extra level is added to the hierarchy—
the SB50 model—to speed-up equilibration of SB25 blends 
(through fine-graining of SB50 configurations). For our study 
using a hierarchy with only two blob-based models is suffi-
cient. If required, when modeling other systems, it is straight-
forward to include into the hierarchy models based on larger 
blobs [12].

3.  Parameterization of blob-based model

3.1. Transferability assumption

The transferability ansatz plays a key role in our parameter-
ization of the blob-based model. Specifically, we assume that 
the parameters defining the molecular architecture, a1, a2, 
b, and k, self-interactions, a3, and non-bonded interactions 
between blobs of the same species, ε̃0, are independent from 
the blend composition. Thus we set these parameters to values 
already known from an earlier study [12] of single-component 
melts of polymers, which are identical to our A (B) homopoly-
mers. Table 1 recapitulates the parameters used in this work 
for SB25 and SB50 models, taken from the Supplementary 
Information of [12]

The transferability ansatz can be rationalized taking into 
account theoretical predictions concerning the dependence 
of chain size on the strength of incompatibility between dif-
ferent components in miscible blends [33, 34]. This incom-
patibility is quantified via χN , where χ is the Flory–Huggins 
(FH) parameter and N stands for the number of repeat 
units per chain. Simple scaling arguments and more elabo-
rated calculations predict [33] that polymer chains should 
contract in the homogeneous phase, i.e. in the miscible 
regime, with increasing χN . Within the one-loop correc-
tion to Flory–Huggins mean-field theory, [34] the difference 
between the mean square radii of gyration of polymers in a 

homopolymer melt, R2
g(m), and miscible blend, R2

g(b), scales 

as 
[
R2

g(m) − R2
g(b)

]
/R2

g(o) ∼ C/N̄ 1/2. Here, R2
g(o) stands for 

the radius of gyration of the chain if it were an unperturbed 

(ideal) coil. The quantity N̄ = (ρcR3
e(m))

2 ∼ N  is the invar-
iant degree of polymerization (ρc and Re(m) are, respectively, 
the number density of chains and their root mean-square end-
to-end distance in the melt). The coefficient C depends on 
χN . The maximum incompatibility for the symmetric blends 
considered in our study is χN = 1.7, so that C � −0.4, as 
estimated with the help of figure 6 from [34]. For a blend of 
chains with NBS = 1000, which corresponds to N̄ 1/2 ≈ 60.1, 

we estimate 
[
R2

g(m) − R2
g(b)

]
/R2

g(o) to be below 1%. Due to the 

weak dependence of chain conformations of long polymers on 
χN  in miscible blends, it is plausible to assume that at least 
those parameters that are directly linked to coarse-grained 
bonded potentials (a1, a2, b, and k) can be estimated from the 
limit χN = 0.

Table 1.  Parameters used for soft-blob models corresponding to 
two different levels of coarse-graining of the generic BS model.  
The values of the parameters were obtained in [12].

Parameter SB25(Nb = 25) SB50(Nb = 50)

a1 × 104 5.19 4.78

a2 9.752 9.480
a3 32.2 63.8
b 5.21 7.45
k 1.346 1.320
ε̃0 566 754
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3.2.  Parameterizing interactions between blobs of different 
species

Within the transferability ansatz, ε̃AB is the only parameter 
that must be determined on the basis of reference configura-
tions of blends described with microscopic detail. Because the 
coarse-graining procedure conserves the amount of polymer 
molecules, χN  is an invariant quantity [35–37]. Therefore ε̃AB 
must be chosen such that the mesoscopic description of the 
blend conserves the χN  of the microscopic blend to be gener-
ated via backmapping.

In blends described with the microscopic model from sec-
tion 2.1, χN  is proportional [38] to (εAB − ε0)NBS. To obtain the 
specific relationship between χN  and (εAB − ε0)NBS, we ini-
tially prepare a set of symmetric mixtures of A and B homopoly
mers composed of chains with lengths NBS = 50, 100, 200 and 
300. We only focus on cases where (εAB/ε0 − 1)NBS � 3.0 
in order to remain in a miscible state [38]. Due to moderate 
chain lengths, these blends can be equilibrated through brute 
force molecular dynamics (MD) simulations. All MD simu-
lations used the Langevin thermostat and were performed 
with the efficient ESPResSo++ software package [39]. When 
designing the MD runs, we took into account that the Rouse 
relaxation time τe of the entanglement strand Ne ≈ 87 (see 
section 2.1) in a homopolymer melt described by the micro-
scopic model is about 10 000τ . With this estimate in mind, the 
length of the MD simulations for the unentangled blends with 
NBS = 50 and 100 was set to about 5τe, which is longer than 
the Rouse relaxation time of the chains. For the weakly entan-
gled systems with NBS = 200 and NBS = 300, the run time 
was set (respectively) to 60τe and 75τe, which exceeds the 
reptation time of the chains. For all cases, we confirmed that 
the correlation 〈ustartuend〉 of the end-to-end unit vectors of the 
chains between the initial configuration and the last configura-
tion has decayed to zero. The chains in the samples amount to 
400 for NBS = 50 and 100, 200 for NBS = 200, and 100 for 
NBS = 300.

After the initial samples of blends with symmetric com-
position are relaxed using brute force MD, they are subjected 
to hybrid MD/MC simulations in the semi-grand canonical 
ensemble [33, 37]. The MC part of the scheme consists of 
standard identity-changing moves attempting to switch the 
chemical species of a randomly chosen chain. The proposed 
move is subjected to a Metropolis criterion under a given 
exchange chemical potential µex. After attempting n/2 type 
exchanges, the configuration is subjected to a short MD simu-
lation corresponding to about 1600τ . This cycle of MC moves 
and MD runs is repeated 300 times for NBS = 50 and 100, 
400 times for NBS = 200 and 300. From the last two third of 
these cycles, we estimate the average volume fraction of the 
A homopolymer, φ.

The mean-field Flory–Huggins theory predicts that µex, φ, 
and χN , are connected as:

ln
φ

1 − φ
− µex = χN(2φ− 1).� (13)

Overall, we observe that for the blends considered in our 
study the relationship described by equation (13) is fulfilled 

rather well. As an illustration, figure 2(a), presents an example 
for blends with NBS = 100, considering several values of εAB. 
For different chain lengths, χN  can be estimated [33, 37] from 
the slope of the linear plots, as those presented in figure 2(a). 
Figure 2(b) presents χN  extracted in this way, as a function of 
(εAB − ε0)NBS. It can be observed that the slope of the linear 
relationship between χN  and (εAB − ε0)NBS changes slightly 
with chain length, e.g. the average slopes for NBS = 50 and 
NBS = 300 differ by about 8%. Such chain-length effects have 
been extensively investigated in previous theoretical studies 
[34, 37, 40–42]. It is currently accepted that within a first order 
approximation the dependence of χN  on chain length can be 

expressed as: χN ≈ χeN
[
1 + C0N̄−1/2

]
. As has been dis-

cussed previously, N̄  denotes the invariant degree of polym-
erization in the melt, while C0 is a constant. For structurally 
symmetric blends theoretical arguments based on perturbation 

Figure 2.  Examples of plots used to estimate χN  through the semi-
grand canonical MC (see main text for details), for (a) microscopic 
model with NBS = 100, (c) SB25 model of NSB25 = 40, and  
(e) SB50 model of NSB50 = 20. For the microscopic model, panel 
(b) presents the relationship between (εAB − ε0)NBS and χN  
(obtained by the semi-grand canonical MC) for different chain 
lengths as indicated by the legends. For blob-based models SB25 
and SB50, panels (d) and (f) (respectively) present the relationship 
between ρSB(ε̃AB − ε̃0)NSB and χN  for different chain lengths as 
indicated by the legends. The superscripts in brackets refer to the 
type of the blob-based model.

J. Phys.: Condens. Matter 30 (2018) 174001
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theory predict [41] that this constant is universal and equal 
to C0 � 2.64. For detailed discussions the interested reader 
is referred [34, 37, 40–42] to several reviews and original 
studies. We mention here briefly, that this expression for χN  
includes corrections due to short-range fluctuation effects and 
correlations (e.g. local liquid packing), as well as long-range 
fluctuation effects. Short-range effects are included [42] in 
the ‘effective’ χeN . By taking these effects into account, χeN  
differs [37, 42] from the ‘bare’ χoN  that one would obtain 
within a simple mean-field approximation. Effects of long-
range fluctuations are captured by the C0N̄−1/2 term. To dis-
tinguish conceptually [42] χN  from χeN  , it is useful to name 
the former as ‘apparent’ [42].

In this work, we establish the apparent χN  for the needs of 
our backmapping procedure and do not focus on the physics 
of its dependence on various system parameters. For our pur-
poses, it is more convenient to approximate χN  in the micro-
scopic model as:

χN ≈ C1

(
1 +

C2√
NBS

)
(εAB − ε0)NBS� (14)

where C1 and C2 are unknown parameters. Based on 
equation  (14), the data from figure  2(b) are re-plotted in 
figure  3(a) as a χN/(εAB − ε0)NBS versus 1/

√
NBS graph 

(solid circle symbols). It can be seen that the data points 
obtained for the same chain length but different εAB scatter. 
We have observed no systematic dependence on εAB con-
cerning the location of the scattered points with respect to 
each other. Hence for each 1/

√
NBS, we consider a single 

χN/(εAB − ε0)NBS (red crosses) obtained as an average over 
the corresponding scattered points. The standard devia-
tion of these averages sets the width of the error-bars in the 
linear fit used to correlate these data (dashed line). From 
this fit we obtain C1 = 0.56  and C2 = 1.05. Interestingly, 
if we recast C2/

√
NBS  in terms of the invariant degree of 

polymerization N̄ , we conclude that the calculated C2 is 
equivalent to C2 ≈ 2.0 which is not too far from the theor
etically predicted universal value [41].

Using simple algebraic manipulations, it is instructive to 
transform equation (8) into:

Vnb =

∫
drρ2

SB

[
1
2
ε̃0φ̂

2
A(r) +

1
2
ε̃0φ̂

2
B(r)

+ ε̃ABφ̂A(r)φ̂B(r)
]
+
∑

j

(
a3 −

1
2

(
3

4π

)3/2

ε̃0

)
σ−3

j

=

∫
ρSBdr

[
1
2
ρSB(ε̃0 + ε̃AB)(φ̂A(r) + φ̂B(r))2

+ρSB(ε̃AB − ε̃0)φ̂A(r)φ̂B(r)
]

+
∑

j

(
a3 −

1
2

(
3

4π

)3/2

ε̃0

)
σ−3

j .

�

(15)

We have defined:

φ̂A,B(r) =
1
ρSB

∑
j∈{A,B}

ρ(r|Rj,σj)� (16)

as the blob volume fractions. Here ρSB = nNSB/V  is the 
number density of blobs. Taking into account equation (15), 
it is straightforward to write the energy per blob in a homoge-
neous phase with composition φA and φB , within a mean-field 
approximation where the instantaneous variables φ̂A,B  are 
replaced with their mean values φA,B:

Figure 3.  (a) For the microscopic model, panel (a) presents with 
red solid symbols χN/(εAB − ε0)NBS as a function of 1/

√
NBS, for 

different values of εAB. The data have been obtained from blends 
with short chains, fully relaxed using hybrid MD/MC. For each 
1/

√
NBS red crosses are averages calculated over the data points 

corresponding to different εAB (see main text for details). The linear 
fit of the averages is presented with a dashed line. Green symbols 
present data obtained from backmapped blends containing long 
polymers (NBS = 1000). Panels (b) and (c) demonstrate analogous 
plots for models SB25 and SB50 (respectively), presenting 
χN/ρSB(ε̃AB − ε̃0)NSB as a function of 1/

√
NSB. The superscripts in 

brackets refer to the type of the blob-based model.
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Vnb

nNSB
=

1
2
ρSB(ε̃0 + ε̃AB)(φA + φB)

2

+ ρSB(ε̃AB − ε̃0)φAφB

+
∑

j

(
a3 −

1
2

(
3

4π

)3/2

ε̃0

)
σ−3

j .

�

(17)

The last term in equation  (17) is written as a sum of inde-
pendent contributions of each blob and can be included into 
a Hamiltonian with the bonded potentials of the soft blob 
systems. Following the simple mean-field Flory–Huggins 
approach, we assume that chain conformations are not affected 
by mixing and neglect fluctuations of blob size. Within these 
approximations, we obtain a rudimentary mean-field expres-
sion for the free energy F  in the homogeneous state:

F
nNSB

=
φA

NSB
lnφA +

φB

NSB
lnφB

+
1
2
ρSB(ε̃0 + ε̃AB)(φA + φB)

2

+ ρSB(ε̃AB − ε̃0)φAφB

�

(18)

where the first term is the translational entropy of the chains. 
Note that we have set kBT = 1. As in other soft models of 
blends [37], the last term in equation (18) is the only contrib
ution to the mean-field free energy which depends on the 
composition and will be, therefore, relevant for the phase 
behavior [37]. The simple mean-field free energy suggests 
that the apparent χN  in our mesoscopic blends is proportional 
to ρSB(ε̃AB − ε̃0)NSB.

As in the case of the microscopic model, we identify χN  
for the soft blob models SB25 and SB50 via semi-grand 
canonical MC (casted in terms of the particle-to-mesh algo-
rithm [32]). Figures  2(c) and (e) (SB25 and SB50 systems, 
respectively) demonstrate that the relationship given by equa-
tion (13) is fulfilled for these two mesoscopic blends as well. 
The dependence of χN  on ρSB(ε̃AB − ε̃0)NSB for chains with 
number of blobs ranging from NSB = 10 to 80 is presented in 
figures 2(d) and (f) (SB25 and SB50 systems, respectively). 
Overall, the plots in figures 2(d) and (f) are consistent with 
the expected proportionality of χN  on ρSB(ε̃AB − ε̃0)NSB. 
Comparing to the microscopic description, the dependence 
on chain length is somewhat weaker, especially for the SB50 
system.

To obtain an analytical expression for the dependence of 
the apparent χN  on chain length for the blob-based models 
we use the expression:

χN ≈ C1

(
1 +

C2√
NSB

)
ρSB(ε̃AB − ε̃0)NSB.� (19)

Based on equation (19), the data from figures 2(d) and (f) are 
presented in figures  2(b) and (c) (SB25 and SB50 systems, 
respectively) as a χN/ρSB(ε̃AB − ε̃0)NSB versus 1/

√
NSB plot. 

For each value of 1/
√

NSB, the scattered points are treated as 
in the case of the microscopic model. From linear regression 
of averaged points (crosses) we obtain for SB25 C1  =  0.67 
and C2  =  0.26, while for SB50 we obtain C1  =  0.78 and 
C2  =  0.13. Once the parameters C1 and C2 in equations (14) 

and (19) are known, matching χN  in the microscopic and a 
blob-based model is straightforward. For a chosen χN , equa-
tion  (14) is used to estimate the required εAB in the micro-
scopic model. Substituting the same χN  into equation  (19) 
and solving with respect to ε̃AB delivers the required strength 
of interactions between A and B blobs.

4.  Back-mapping procedure

After the soft blob models are parameterized, large samples 
of blends with long chains can be equilibrated using a slightly 
modified version of the hierarchical backmapping procedure 
developed in [12]. The approach can be subdivided into two 
major stages (see section 2 and figure 1) presenting: (a) equili-
bration of a blend described with the SB50 model and sub-
sequent fine-graining into a blend described with the SB25 
model and (b) reinsertion of microscopic details into the 
mesoscopic configuration described by the SB25 model and 
equilibration of reinserted microscopic degrees of freedom.

Stage (a) was performed as described in [12]. We sum-
marize briefly that the blend described with the SB50 model 
is equilibrated with the particle-to-mesh MC. Subsequently, 
every single SB50 blob is substituted by a pair of blobs of 
the SB25 model. For this substitution, the COM and the gyra-
tion radius of the two SB25 blobs match the position and the 
size of the coarser blob, respectively. After reinsertion, the 
SB25 blend is equilibrated by a short particle-to-mesh MC 
simulation.

In stage (b) each of the n chains in the SB25 blend is 
replaced by a molecule described with the microscopic model. 
This substitution is performed [12] so that the COM and the 
radius of gyration (squared) of every subschain with Nb micro-
scopic monomers match the COM and the radius (squared) of 
the corresponding blob. In practice, this task is accomplished 
by manipulating [12] the conformation of each reinserted 
chain with special potentials. We emphasize that during this 
first reinsertion of microscopic details, all intermolecular and 
intramolecular (apart from 1–2) non-bonded interactions are 
deactivated. Thus the blend presents an ensemble of inde-
pendent chains placed in external fields (the potentials used to 
manipulate the chain conformations) and the reinserted mono-
mers can overlap with each other.

Comparing to [12], in our study the ensemble of inde-
pendent chains obtained after the first reinsertion of micro-
scopic details is subjected to an additional optimization of 
chain conformations. To motivate this step, let us consider for 
simplicity a homopolymer melt (equivalent of a blend with 
χN = 0) with NBS = 1000, which has been already equili-
brated in [12]. For this system figure 4 presents the internal 
distance plot, which constitutes one of the most sensitive 
conformational descriptors [4]. This quantity is obtained by 
plotting 〈R2(s)〉 versus s, where 〈R2(s)〉 is the mean square dis-
tance of monomers in the same chain and s is the difference of 
their ranking numbers along chain contour. We consider first 
the internal distance plots at two stages (green and black line, 
respectively): (a) just after the first reinsertion of microscopic 
details and b) after recovering all non-bonded interactions and 
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final equilibration [12]. In the latter case, the plot (black line) 
is indicative of a melt equilibrated at all scales [12] and is in 
excellent agreement with a reference curve calculated from 
melts equilibrated through configuration assembly [7] (red 
line). At the same time, it can be observed (green line) that just 
after reinsertion the conformations are distorted at short scales 
(s � 100). For scales smaller than the blob size (s � 25) this 
distortion is linked to the fact that the conformations of short 
subschains Nb = 25 during reinsertion are constrained to 
reproduce only two observables (COM location and radius of 
gyration. For s  >  25 the conformational distortions stem from 
imperfections [12] of the simple blob model.

The additional optimization step mitigates conformational 
distortions, facilitating the final recovery of the liquid struc-
ture (see below). The optimization presents a very short MD 
run in the ensemble of independent chains, where the aux-
iliary potentials controlling the COM and radius of gyration 
of the subchains are now removed. Instead, auxiliary angular, 
Vbend(cos θ), and non-bonded, Vs(r), potentials acting between 
intramolecular beads other than 1–2 neighbors are introduced. 
These interactions are given by:

Vbend(cos θ) =
1
2

kθ(1 + cos θ)� (20)

and

Vs(r) = A
(

1 + cos

(
πr
σ0

))
if r < σ0

= 0 otherwise.
�

(21)

The parameters take the values kθ = 0.912ε0  and A = 3.0ε0. 
The value of kθ  is chosen such that the mean square end-
to-end distance, 〈R2

e〉 of an isolated chain subjected to the 
two auxiliary potentials matches the 〈R2

e〉 in a homopolymer 
melt. For this purpose we benefit from the approximate  
relationship [4]:

〈R2
e〉 = (N − 1)l2

(
1 + 〈cos θ〉
1 − 〈cos θ〉

)
� (22)

where

〈cos θ〉 =
∫ 1
−1 dxxe−β

(
Vbend(x)+Vs(l

√
2(1+x))

)

∫ 1
−1 dxe−β

(
Vbend(x)+Vs(l

√
2(1+x))

) .� (23)

Here the bond length is set to l = 0.97σ0.
Figure 4 presents the internal distance plot calculated after 

the optimization step (blue line), demonstrating substantial 
reduction in distortion of chain conformations.

The missing non-bonded interactions are introduced 
into the optimized samples following a standard push-off 
procedure [4, 7, 12]. The WCA potential in equation (2) is 
‘force capped’ and the configuration is subjected to MD. 
The maximum allowed force is gradually increased [7], as 
monomer-monomer overlaps are becoming less severe, to 
recover finally the original WCA interactions. In the micro-
scopic model, non-bonded interactions are differentiated 
depending on whether the interacting monomers are of the 
same or different chemically species. In general, one could 
adjust the protocol for removing the force-capping during 
the push-off to the type of the potential. Here we use the 
simplest approach, where all WCA potentials are subjected 
to the same force-capping. We will return to this point in 
section 5, when presenting an application of backmapping. 
After the push-off, the blend is subjected to a standard MD 
simulation which relaxes locally the reinserted microscopic 
degrees of freedom on length-scales corresponding to a 
couple of blobs.

5.  Application example

Here we apply our backmapping procedure to generate sam-
ples of blends containing n  =  500 chains with NBS = 1000 
beads. The composition is set to φ = 0.5. Different degrees of 
miscibility are considered, corresponding to χN = 0.57, 1.1, 
and 1.7 (εAB = 1.001, 1.002, and 1.003).

As with any new computational method, it is desirable to 
compare the results of the hierarchical backmapping scheme 
with reference data obtained from established simulation 
techniques. The backmapping procedure was previously veri-
fied [12, 24] for homopolymer melts, using reference data 
generated via well-established configuration-assembly pro-
cedures [4, 7]. Currently, such techniques are not available 
for multicomponent polymer systems. Therefore, to generate 
reference data for blends with NBS = 1000 we rely on a var-
iant of the hybrid MD/MC simulations, introduced in sec-
tion 3). For these simulations we use as initial configurations 
equilibrated samples of single-component homopolymer 
melts generated in [12], containing n  =  1000 chains with 
NBS = 1000 monomers. The homopolymer melt configu-
rations are converted into symmetric blends, assigning the 
polymers randomly A  or B identity. These initial blend con-
figurations are subjected to a hybrid MD/MC procedure. 
Specifically, we employ MC moves attempting to exchange 

Figure 4.  The internal distance plot is shown in backmapped blends 
with χN = 0 after (a) the first reinsertion of microscopic details 
(green line), (b) optimization of conformations of reinserted chains 
(blue line), and (c) push-off and final equilibration (black line). The 
red line presents a reference internal distance plot calculated from 
melts equilibrated through a configuration-assembly procedure [7].
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identities between two randomly chosen A  and B polymers, 
setting µex = 0 . Every n/2 attempted identity-exchange 
MC moves, the blend configuration is subjected to MD run 
lasting 500τ . In total, we perform 120 such MD/MC circles, 
after which the samples are subjected to a MD simulation 
for about 50 000 τ  which is several times longer than τe in 
single-component melts. All MD steps are carried out using 
the efficient software ESPResSo++ [39].

Formally, the starting and the final configurations of a 
NBS = 1000 blend prepared using the hybrid MD/MC simula-
tions are not fully de-correlated. For example, the orientation 
de-correlation function of polymers calculated from these con-
figurations has decayed to 〈ustartuend〉 � 0.88. Nevertheless, 
we argue that these configurations are still useful for checking 
the backmapping procedure. Indeed, if miscible blends gen-
erated by the hybrid MD/MC and hierarchical backmapping 
(which are different techniques) have the same properties, 
then this strongly supports the validity of both methods.

Figures 5(a)–(c) present the internal distance plots cal-
culated, respectively, in backmapped blends (red lines) with 
χN = 0.57, 1.1, and 1.7. The plots are compared with their 
counterpart (black symbols) calculated in samples prepared 
using the hybrid MD/MC. In all cases, the deviations between 
data obtained using the two methods is below 2%. The internal 
distance plots for the backmapped blends from figures 5(a)–(c) 
are re-plotted in figure 5(d) together with the internal distance 
plot for χN = 0. The tails of these plots are shown magnified 
in the inset. The deviations of the internal distance plots from 
each other are essentially within the statistical noise of the data 
and we do not observe any systematic dependence on χN . 
This behavior agrees with the theoretical predictions (see sec-
tion 3) that in the region of studied χN , for NBS = 1000, the 
chain dimensions should change by less than 1%.

To verify the equilibration of the liquid structure of 
the backmapped blend we compare in figures  6(a)–(c) the 
inter-molecular radial distribution functions calculated in 
the backmapped blends (lines) for the same, gAA(r) and dif-
ferent, gAB(r), types of beads with their counterparts (lines) 
in the samples from hybrid MD/MC. On small scales around 
r ≈ σ0, the deviation of the radial distribution functions is at 
most 2.5%. As one moves to larger distances the deviation 
becomes even smaller and drops below 2%.

We have observed that using longer MD runs to equili-
brate the reinserted microscopic beads in backmapped blends, 
reduces the differences between the radial distribution func-
tions calculated in these systems and their counterparts in 
hybrid MD/MC. This trend of convergence supports our 
expectation that the blends prepared through hybrid MD/MC 
simulations can serve as reliable reference systems.

Overall, we observe in blends that the equilibration of 
microscopic degrees of freedom reinserted through the 
standard push-off procedure developed for homopolymer 
melts [4, 7] requires run-times on the order of 2.8 τe in order 
to reproduce the long-wavelength structure with deviations 
smaller than 2%. We have verified that the moderate increase 
of equilibration times in blends, comparing to homopolymers, 
should not be attributed to imperfections of the simple blob-
based model describing the mesoscopic samples (used as an 
input for the backmapping procedure). For this verification 
we considered configurations of blends described with micro-
scopic detail, prepared using the hybrid MD/MC approach. 
These configurations were coarse-grained into a blob-based 
representation, replacing each subchain with Nb monomers 
by a blob placed at the COM of the subchain. The radius of 
each blob was set equal to the radius of gyration of the under-
lying subchain. In this way, we obtained an ‘exact’ blob-based 

Figure 5.  Mean-square internal distance plots (red line) obtained by averaging 6 backmapped configurations are compared with the plot 
calculated in blends prepared using hybrid MD/MC simulations (black symbols) for (a) χN = 0.57, (b) χN = 1.1, and (c) χN = 1.7. Panel 
(d), compares the internal distance plots calculated from the backmapped configurations at different χN . The tail of the plots is presented 
magnified in the inset.

J. Phys.: Condens. Matter 30 (2018) 174001



T Ohkuma et al

10

representation of the miscible blend, which e.g. incorporates 
all complex effects of multibody interactions. These effects, 
in part, are not captured by the simple blob model defined 
in section 2.2). The ‘exact’ blob-based description was used 
as a starting configuration for the reinsertion of microscopic 
details following the algorithm described in section  4. The 
equilibration times required for gAA(r) and gAB(r) to converge 
to the reference data, were similar to the case of reinsertions 
starting from configurations described with the simple blob-
based model. As expected, the local structure depends on the 
reinsertion procedure and prolonged equilibration times are 
due to the simplicity of the push-off algorithm. In all cases we 
observe that gAA(r) and gAB(r) converge to the reference data 
from above and below, respectively. These trends demonstrate 
that the simple push-off generates a blend with microscopic 
structure representative of a χN  which is marginally higher 
comparing to the target value. To increase the efficiency of 
the backmapping scheme, blends require more advanced pro-
cedures to control the degree of miscibility during push-off. 
Improving such details will be a subject of future work.

The backmapped blends were subjected to hybrid MD/MC 
simulations in the semi-grand canonical ensemble (described 
in section 3.2) to calculate the χN  parameter and demonstrate 
that it indeed matches the targeted value. Figure  7 presents 
(crosses) the calculated χN  as a function of the targeted χN  
demonstrating that they match closely. We add the χN  esti-
mated for the backmapped blends as a χN/(εAB − ε0)NBS 
versus 1/

√
NBS plot to figure  3 (green crosses). The results 

are consistent with the linear fit (black dashed line) calculated 
in section 3.2 for blends with smaller NBS. It is instructive to 
consider the values of εAB corresponding to the χN  parameters 
realized for the backmapped blends and estimate the solubility 
from the one-fluid approximation [37, 38, 40]:

(χN)rdf =

∫
d3rginter(r)

[
VAB(r)−

1
2
(VAA(r) + VBB(r))

]
�

(24)
where ginter(r) is the inter-molecular radial distribution func-
tion for the case of χN = 0 (homopolymer melt). The (χN)rdf 
estimated via equation (24) is also presented in figure 7 (open 
symbols) and agrees well with the χN  obtained from the 
semi-grand canonical simulations.

At a first glance, the backmapping and the hybrid MD/
MC procedures required comparable resources to equili-
brate the NBS = 1000 blends. To equilibrate mixtures with 
n  =  500 chains, the reinsertion process (push-off and final 

Figure 6.  Inter-molecular radial distribution functions for the same (red lines), gAA(r), and different (green lines), gAB(r), types of beads in 
backmapped blends are compared with their counterparts (red and green symbols, respectively) calculated in blends prepared using hybrid 
MD/MC simulations for (a) χN = 0.57, (b) χN = 1.1, and (c) χN = 1.7.

Figure 7.  The values of χN  obtained by subjecting backmapped 
blends to hybrid MD/MC simulations (crosses) and estimated via 
equation (24) (open circles) are shown as a function of the target 
χN .
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re-equilibration) in the backmapping procedure required 72 h 
on 16 processors (2.6 GHz). The time for generating the blob-
based configuration into which the reinsertion was performed, 
required only 5 h on a single processor and is negligible. To 
equilibrate systems with n  =  1000 chains, the hybrid MD/
MC required 120 h on 64 processors of comparable archi-
tecture. These CPU times are equivalent to 2.3 × 10−3 and 
7.6 × 10−3 CPU h / particle, respectively. But, in fact, the 
hybrid MD/MC method requires as an input equilibrated con-
figurations obtained from hierarchical backmapping of long 
homopolymer melts. Therefore, the hybrid MD/MC is not a 
stand-alone equilibration technique. Moreover, comparing to 
hierarchical backmapping, this procedure is significantly less 
versatile, e.g. the identity-exchange move cannot be applied to 
blends with different lengths of chains or strong asymmetries 
in molecular architecture [43]. So far, hierarchical backmap-
ping is the most optimal way for preparing configurations 
of highly entangled polymer blends with a large number of 
molecules. Because the equilibration time in hierarchical 
backmapping does not depend on chain length (it is on the 
order of τe), the method can be advantageous even for equili-
brating weakly entangled blends, where NBS equals a few 
Ne. In contrast, in brute force MD the CPU time is propor-
tional to the reptation time τrep, which describes the relaxa-
tion of the entire chain. Because [1] τrep ∼ (NBS/Ne)

3, a small 
increase of chain length in the weakly entangled regime (see 
runs with NBS = 200 and NBS = 300 in our case) has tre-
mendous effects on the efficiency of the brute force MD. At 
the same time, backmapping procedures for relatively short 
chains might be more sensitive to approximations in simple 
blob-based descriptions, e.g. chain-end effects increase and 
differentiation of blobs according to their position in the chain 
might be necessary.

6.  Concluding remarks and outlook

We extended an efficient hierarchical backmapping scheme, 
developed earlier for homopolymer melts [12, 24], to polymer 
blends described with a generic microscopic BS model [30, 
38]. For a first method development, we focused on the sim-
plest case of symmetric miscible blends. The idea of the 
method can be summarized as follows. Blends are equilibrated 
using a model where polymers are described as chains of soft 
blobs. Each blob represents a subchain with a large number 
of microscopic monomers, i.e. the model is very coarse. The 
equilibrated coarse-grained blend is sequentially fine-grained, 
reinserting at each step the degrees of freedom of a finer blob-
based model. Once the blob-based description is sufficiently 
detailed, the microscopic monomers are reinserted. Namely, 
the hard excluded volume is recovered through a push-off 
procedure [4, 7] and the blend is re-equilibrated with MD 
simulations corresponding to time-scales on the order of the 
entanglement time, τe.

The potential of the backmapping strategy was demon-
strated by equilibrating samples of blends containing 500 
chains with 103 microscopic monomers. For the flexible BS 
model used our study these degrees of polymerization lead, 

on the average, to about ten entanglements per chain [7, 12]. 
For the same length of chains, the number of entanglements 
can be easily increased by making the BS chain stiffer [7]. 
The generated blends were characterized by various degrees 
of miscibility, defined by χN = 0.57, 1.1 and 1.7.

The investigated systems are among the simplest exam-
ples of blends. Nevertheless, their modeling required the 
consideration of several methodological issues. The most 
important are (a) development and parameterization of blob-
based models for multicomponent systems, (b) reinsertion of 
microscopic details into configurations described by blob-
based models, and (c) validation of equilibration of samples 
prepared through hierarchical backmapping. Although these 
questions were successfully addressed for the purposes of our 
work, there is substantial room for further methodological 
developments.

Our blob-based descriptions assume that the ingredients 
of the model (potentials and parameters) associated with the 
blended A and B homopolymers are the same as in single-
component melts of these homopolymers. Only the interac-
tions between A and B blobs were introduced such that the 
blob-based model reproduces a desired χN . The potentials 
in our blob-based description are inspired by generic laws 
of polymer physics [23, 24, 44] and can be seen as simple 
approximations of the many-body potential of mean force 
[45]. For instance, blob-blob mean-force potentials should 
exhibit long tails [22, 46–49] changing at large distances 
from repulsive to attractive. These features are crucial [20] 
for reproducing, e.g. compressibility, but are missing from 
the repulsive Gaussian potentials in our model. Our imple-
mentation of the simple blob-based model is justified by the 
observation that reinsertion of microscopic details mitigates 
imperfections in the description of local conformational 
properties and liquid structure on blob level (at least within 
the statistical accuracy of the simulation data). Nevertheless, 
we expect that studying more complex blends, e.g. with 
strong conformational and structural asymmetries, will 
require more advanced blob-based models. The properties 
of such asymmetric mixtures depend on composition in a 
non-trivial way [43] making the implementation of the trans-
ferability ansatz problematic. Earlier studies [46, 50, 51] in 
solutions and melts demonstrated that blob-based models 
can be developed through systematic coarse-graining tech-
niques. Integral equation theories are a promising approach 
[52, 53, 54] for developing blob-based models, without 
requiring reference data from computationally demanding 
brute force simulations.

Reinsertion of microscopic monomers into a blend 
described on the blob level is an important step during back-
mapping. We followed the standard push-off procedure [4, 7], 
initially developed for homopolymer melts, using the same 
protocol to recover the hard excluded volume interactions 
for all types of monomers. Due to the simplicity of the push-
off scheme, the equilibration of the reinserted microscopic 
degrees of freedom required somewhat longer relaxation times 
comparing to homopolymer melts. In the future, the efficiency 
of the final equilibration step can be increased by developing 
reinsertion protocols tailored for multicomponent systems.
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Validating equilibration of backmapped blends required 
reference samples with long chains. Since configuration-
assembly procedures are not available for blends, the refer-
ence samples were prepared through a hybrid MD/semi-grand 
canonical MC technique. The latter is not a stand-alone tech-
nique and we used as starting configurations blends created 
by random labeling of chains in homopolymer melts equili-
brated by hierarchical backmapping [12]. The systematic 
agreement between conformational and structural properties 
in blends prepared using backmapping and hybrid MD/MC, 
demonstrates that both methods can equilibrate the generic 
blends in our study. However, the identity-switch moves in 
the hybrid MD/MC scheme are impractical in cases of strong 
asymmetry between components [43]. In contrast, hierar-
chical backmapping can be applied to generic blends with 
strong asymmetries, such as polydisperse systems. Altogether, 
the preparation of reliable reference data for parameterizing 
blob-based descriptions and validating equilibration remains 
an important methodological issue for hierarchical backmap-
ping. In certain cases the preparation of reference data could 
benefit from advanced MC methods, including rebridging 
algorithms [2, 3].
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